This experimental study examines the role that clay minerals play in controlling the frictional properties of subduction plate boundary faults and how, together with regional fluid pressure variations, this controls the state of stress on the subduction thrust. We also address the role that clay digenesis plays in the onset of seismogenic activity. We focus here on the Nankai Trough, SW Japan, because it is representative of sediment-rich subduction zones (including Alaska and Cascadia) that are capable of generating very large earthquakes (~Mw 8 and greater) and it is the proposed site of the IODP NANTROSEIZE drilling project. Two significant, seemingly contradictory attributes of these subduction zone faults are that they appear to be almost fully locked over much of their along-strike length during interseismic periods even though the faults appear to be extremely weak.

Accomplishments

- Experiments defined a clear relationship between shear strength and total clay content in the Nankai subduction thrust. Ring and direct shear tests (mineralogy work by M Underwood) indicate that shear strength of materials in subduction thrusts decreases with increasing clay content. Saturated clay phases in the fault possess intrinsically low residual friction coefficients (μ_r) at 1-30Mpa stress levels. These clay phases dominate the Nankai subduction décollement zone. Better correlation between measured shear strength and mineralogy was obtained when the clay data was plotted as total clay rather than smectite content of natural Nankai samples, because of the dominance of illite in the majority of them.

- Determined that the illite (Il) phase is already mechanically important/dominant in the altered incoming Muroto section (where μ_r should lie between 0.2-0.32) and smectite (Sm) contributes to even lower μ_r values of ~0.13 in the older incoming strata off the Ashizuri Peninsula (Fig. 1).

- Showed that high clay contents and regional excess fluid pressure contribute to low resolved shear stresses on the Nankai subduction zone plate boundary. Together with elevated fluid pressure, the μ_r values (~0.32) of Il-dominated faults limit shear stresses to <4MPa within the frontal ~50 km of the subduction system off Muroto. Along strike towards the Ashizuri region, increases in wedge taper suggest that fluid pressures fall and basal shear stresses rise slightly, but low μ_r values of the clay-rich faults still limit shear stresses to a few 10s MPa (consistent with other estimates of plate boundary weakness). We propose that typical presence of clay-rich faults and moderate fluid overpressures cause weakness of the Nankai and other subduction plates.

- Data do not support the hypothesis that the smectite to illite reaction directly controls the onset of seismogenic behavior in the Nankai system, because there is already a pre-subduction mechanical dominance of Il (rather than smectite) in the incoming section, and because all the clay phases tend to velocity strengthen (Fig. 2).
Fig. 1: Results of ring shear tests conducted on natural Nankai samples (black dots) and artificial mineral mixtures of Sm with Qtz. Data for tests we conducted on Il and tz. mixtures are also shown. The residual friction (μ_r) data are plotted against the volumetric ratio of (A) smectite (V_S) and (B) total clay (V_{S+I+Ch}) within the solid fraction. A2 and M2 denote estimated altered deep décollement property ranges (based on altered mineralogy), A1 and AS1 are unaltered Ashizuri shallow décollement ranges and M1 is the estimated shallow Muroto value. (a - Vitric ash containing samples).

Fig. 2. (A) numerically estimated (Saffer and Bekins, 1998) fluid pressure distribution in the frontal 50km of the wedge (B) Estimated shear stress on the Nankai subduction thrust off Muroto derived from the fluid pressure distribution shown in Figure 2A and the frictional properties of the purified clay minerals (Sm and Il) and Qtz. The estimated frictional resistance for the diagenetically altered Muroto décollement lithologies are also shown (M2, Fig. 1).

Fig. 3: Example of direct shear results for saturated illite at stress levels of 10, 20, and 30 MPa. Rates of velocity stepping tests are shown. Typically, a velocity rate change is followed by a direct initial change in the frictional resistance (a-value), which then subsequently comes to a steady state value at the new slip velocity (b-value). The magnitude of the decay to a steady state friction is typically reported as, $a-b = \Delta \mu / \Delta \ln Vel$, where $\Delta \mu$ is the change in steady state frictional strength and Vel is the sliding velocity. We consistently report positive values of $a-b$ for a velocity increase, implying a velocity strengthening or stable sliding mechanism is operating for illite.